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ABSTRACT 
The capillary underfill (CUF) although a well established 
manufacturing assembly process, is being challenged as die 
thickness diminishes, the interconnection (bumps) get 
smaller and their number increases. Denser populated 
packages demand very tight tolerances for keep out zones  
(KOZ); the total package thickness challenges the process 
throughput since die contamination from underfill fluid is 
not allowed and multiple fluid dispense passes may be 
needed. All this challenges translate in lower capillary 
surface energies, increase in fluid flow drag, smaller particle 
size fluid that often results in increase in viscosity and 
therefore slow flow-out-times. The present work addresses 
these issues. A series of mathematical models based on 
surface energy evolution for CUF accounting for these new 
geometries and processes is proposed. In particular the 
problem of component proximity is and the gap topology 
issues are studied. Experimental data for CUF in the 
presence of these future assembly demands is shown. 
Although there are practical physical limitations for the 
CUF as experienced today if one were to implement it for 
future packages, new hybrid CUF methods that overcome 
such shortcoming are recommended.  
 
INTRODUCTION 
The capillary action occurring in small ducts has been 
studied by several disciplines of science. Molecular forces 
of particles in a fluidic matrix are just an instance. In the 
electronic packaging the fluid dispensing for various 
applications including, potting, filling, component 
underfilling is of common knowledge. The c capillary 
kinetics plays an important role in several of these 
applications. Contrary to the traditional injection molding, 
where the fluid is mobilized by an induced relatively high 
pressure differential at the surface of the fluid wave front, 
the capillary action is a result of adhesion forces 
overcoming the cohesive forces of the moving fluid. A 
Variational approach to determine the fluid-air-solid surface 
shape of the moving front will guide us in determining 
various geometric boundary conditions including gaps sizes, 
and steps occurring in the corresponding capillary ducts.   
 
THEORY AND BACKGROUND 
The analytical approach to solve the problem of surfaces is 
that of Mapertuis principle. These solutions, coupled with 
mechanical adhesive and cohesive forces hat include 
Vander-Wall forces and London forces due to oscillation of 

electron clouds in molecules that are in close proximity, can 
give us a good description of the kinetics that takes place for 
slow fluid flow under capillary action. Given a definite 
integral with boundary conditions, its stationary value can 
be found by minimization of a functional using Variational 
calculus tool [1]. 
 

The Variational of the definite integral can be computed as 
follows: 

 

Dividing by  ad integrating by parts the second term of the 
r.h.s. of above equations we obtain 

 

We define I as the definite integral and since the (x) 
vanishes at the limits of integration (boundary conditions 
are satisfied exactly, x=a and x=b) 

 

We now define the function (x) as 

 

Combining above expression we can then write the 
stationary value of the corresponding definite integral as 

 

It can be easily seen that the above expression would be 
satisfied for any arbitrary (x) if and only if  (x) vanishes 
everywhere in the space [a,b]. We can, on the other hand 
make (x) vanish everywhere except in ‘a small 
neighborhood around a point say, x=. Within this “small 
interval,”  (x) is “practically” constant and can therefore, 
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be taken out of the sum (integral operation) as a simple 
multiplier factor 

 

As the radius  tends approaches zero, our “error’ also tend 
to vanish. The first’ variation or linear term of the 
expression must vanish, hence we can write the expression 
known as the Euler-Lagrange Equation 

 

About two centuries ago Poisson wrote the equation for the 
free energy of a solid elastic membrane 

 

Where H and dS are the mean curvature and infinitesimal 
area element of the surface respectively, and kc is the 
bending elastic modulus. The energy Euler-Lagrange 
equation corresponding to these functional can be written as 

 

And the solution for such functional satisfying the 
minimization of surface energies is the critical curve known 
as the Willmore surface F, written as 

 

NUMERICAL AND ANALYTICAL RESULTS 
We carry out some solution for the formulation presented 
above and using boundary conditions corresponding to the 
flow of a fluid in a capillary action, between two parallel 
plates, and in the presence of various surface topographies. 
The geometry to be treated consist of parallel plates 

 

Figure1.  Drawing of the geometry of two parallel plates 
separated by a gap in the presence of a fluid flowing by 
capillary action between them. 

The capillary motion results, in the presence of a step, i.e., a 
sudden increase in the gap between the parallel surfaces, 
(see figure2) resulted from the numerical analysis is 
depicted in the sequence of pictures shown in figure 3.  
 

 

Figure 2.  A sudden step on the organic substrate. 

There one can observe that the fluid front has a tendency to 
behave in a way that preserves state of symmetry about a 
virtual horizontal plane parallel to the surfaces, thereby 
avoiding the creation of voids in the fluid path.  The 
assumption here of course is that all surfaces in contact with 
the fluid are wettable to it, and that the adhesion is about the 
same for all of them.  This flow behavior is very different 
from that of the case where induced pressure differential (as 
it is in the case of injection molding) for instance, the 
propensity to create voids is rather high in similar 
geometries.  For the case of holes, the flow around them is 
the primary cause of void formation and it is governed by 
the flow velocity field around the hole, tangent to the 
circumference of the hole, and the fluid velocity as the fluid 
goes to a larger gap.   

             

Figure 3.  Capillary fluid flow in the presence of sudden 
step where the gap increases.                     

Other geometries analyzed can be depicted in figure 4, 
including grooves crossing and different grooves directions. 

            

Figure 4. Various laser profile-meter geometries treated as 
spatial boundary conditions: grooves, hole and grooves 
intersections. 

The case for underfilling components where the distance 
between them is comparable to the gap to be capillary 
underfill poses a whole new set of complications [3]. Aside 
from the fact that perhaps only jetting technologies can be 
of use (see figure 5) given that the needle dispensing 
requirements do not physically permits its use, there are 
other limitations imposed by the physics of the underfill and 
capillary equilibrium principles.  

 

Figure 5. Jetting fluid from a distance above the 
components allowing for small distance between 
components. 

Solutions to above problem indicate that when the distance 
between the components is the same as the gap or less, then 
capillary underfilling does not take place, this can be 
depicted in figure 6. 
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Capillary Flow Stops!
Capillary Flow Stops!

 

Figure 6. No capillary flow takes place for this geometry 
(gap same as distance of separation). 

For cases where the distance separating the components is 
larger than the gap to be underfilled, (see figure 7), the 
solution indicates that capillary underfill occurs to 
completion, i.e., the fluid reaches the sides of the smaller of 
the two plates (in this case the glass plate).  

distance

gap

distance

gap

 

Figure 7. Drawing of two components side-by side 
separated by distance larger than the gap to be underfilled. 

As depicted in figure 8, the fluid flows until it reaches 
equilibrium, a fillet around the plate including that area in 
between the components is formed. In figure 7 a sequence 
of event throughout time is shown where the fluid is moving 
under the influence of capillary effects. 

  

               

Figure 8. Sequence showing time slices of the fluid moving 
in a capillary manner in between the gap that is smaller than 
the distance separating the components. 

EXPERIMENTAL RESULTS 
Glass plates were mounted on organic boards with gaps 
varying from 75 to 300 m.  The surface of the board had 
different topographies including, grooves of different depth 
and widths as well as holes drilled to different diameters and 
depths from 250 m to 1.5mm. Figure 9 depicts some of the 
samples used for the experiment. 
 
 
 
 

                    
(a)                 (b)      (c) 

Figure 9. Samples used for capillary underfilling: (a) 
Drilled holes on organic substrate; (b) grove aligned parallel 
to the fluid flow direction; (c) Groove normal to the 
capillary fluid flow direction. 

Underfill material was jetted along a side of the glass plate 
using Asymtek DJ9K jet[4].  Figure 10 depicts the capillary 
flow of the underfill in the presence of a hole with diameter 
about three times larger than the gap and about 1mm deep. 
It is noticed that a void is present, this resulted from thee 
fact that the fluid flows along the peripheral of the hole 
following a near perfect tangential direction to its 
circumference. 

 

Figure 10. Capillary flow in the presence of a large hole on 
the organic substrate, void formation resulting from fluid 
flow tangential to the hole. 

In the case of grooves present on the organic substrate the 
fluid flow in a capillary fashion without allowing void 
formation. When the groove is parallel to the direction of 
the flow void could be formed if such groove is very narrow 
(compared to the gap) and in particular, if its depth varies. 
However, for the case of grooves normal to the fluid flow, 
voids are not formed independent of the groove geometry. 
For a very deep groove, the flow will simply cease to 
continue, this can be understood from the point of view of 
pure equilibrium mechanisms, i.e., it can be simply seen as a 
boundary condition similar to the starting edge of the glass 
plate.  In figure 11 depicts the case where both grooves, 
normal and parallel to the fluid flow direction were present. 

 

Figure 11. Grooves are present in the organic substrate in 
both directions, normal and parallel to the fluid flow 
direction; no voids are formed during the capillary underfill. 

CONCLUSIONS 
A comprehensive analysis of capillary fluid flow has been 
presented and validated by actual data. The coupling of 
molecular forces adhesion and cohesive in nature and the 
minimization of surfaces, as in the case of elastic 
membranes that yield Willmore critical surfaces in the 
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differential geometry scheme gives an adequate way to 
model capillary fluid flow. These solutions were obtain in a 
way by perturbation theory where Variational of the 
functional derived from Poisson integral formulation mimic 
very closely the observation of capillary fluid flow under 
various boundary conditions that included several different 
geometries. For dispensing in presence of tight spacing and 
high density packages, the Jetting technology lends itself in 
a very transparent and practical manner. Above results can 
be used as guidelines in situations where uneven surfaces 
and arrays are present and capillary flow is used. Design 
rules for packaging design need to include the capillary 
physics present during underfilling and fluid dispensing in 
general. 
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